14.1 Heterogeneous Mixtures

Suspensions

- Heterogeneous mixtures from which particles will settle out upon standing.
- The particles in a suspension are much larger than the particles in a solution and do not stay suspended indefinitely.
 - Particles in a suspension typically have a diameter greater than 1000 nm.
 - Particles in a solution are usually only about 1 nm.

Colloids

- Heterogeneous mixtures containing particles with a size between 1 nm and 1000 nm.
- The particles are spread throughout the dispersion medium, which can be a solid, liquid, or gas.
- Particles will not settle out and cannot be separated with filter paper.
- Common Colloids
 - Foams
 - Gas in liquid or gas in solid.
 - Examples
 - Whipped Cream (gas in liquid)
 - Marshmallow (gas in solid)
 - Aerosol
 - Liquid in gas
 - Spray cans
 - Smoke
 - Solid in gas
 - Dust in air
 - Gels
 - Solid in liquid
 - Egg whites
 - Paint
 - Blood
 - Jelly
• Emulsions
 o Liquid in liquid
 ▪ Milk
 ▪ Mayonnaise
 o Requires an emulsifying agent to hold two liquids together that wouldn’t normally mix.
 ▪ For example, mayonnaise is a mixture of vinegar and oil, which don’t usually mix. However, with the addition of an emulsifying agent, egg yolks, the oil and vinegar mix together nicely to form mayonnaise.

− Properties of Colloids
 • The Tyndall Effect
 o Particles in a colloid will scatter light, allowing you to see the beam of light when shined through the colloid.
 ▪ Also happens with suspensions.
 ▪ Does not happen with solutions.
 • Brownian Motion
 o Chaotic movement of colloidal particles.
 ▪ Particles in a colloid are constantly colliding with the particles of the solvent in which they are dispersed.
 • Coagulation
 o Colloidal particles generally develop a positive or negative charge from ions that build up on their surface.
 ▪ All of the particles have the same charge, repelling each other, and making it impossible for the particles to group together.
 o If you add a substance with the opposite charge to the colloid, it will neutralize the colloid particles and they will clump together.
 ▪ This clumping together is called coagulation.